Wednesday, January 27, 2016

Charles Babbage (1791-1871) - Inventor Analytical Engine


Charles Babbage, FRS (26 December 1791-18 October 1871) was an English polymath. He was a mathematician, philosopher, inventor and mechanical engineer, who is now remembered for originating the concept of a programmable computer. Considered a "father of the computer", Babbage is credited with inventing the first mechanical computer that eventually led to more complex designs. His varied work in other fields has led him to be described as "pre-eminent" among the many polymaths of his century.


Parts of Babbage's uncompleted Mechanisms are on display in the London Science Museum. In 1991, a perfectly functioning difference engine was constructed from Babbage's original plans. Built to tolerances achievable in the 19th century, the success of the finished engine Indicated that Babbage's machine would have worked. Nine years later, the Science Museum completed the printer Babbage had designed for the difference engine.

Babbage's birthplace is disputed, but According to the Oxford Dictionary of National Biography Most likely he was born at 44 Crosby Row, Walworth Road, London, England. A blue plaque on the junction of Larcom Street and Walworth Road commemorates the event.

His date of birth was given in his Obituary in The Times as 26 December 1792. However after the Obituary Appeared, a nephew wrote to say that Charles Babbage was born one year Earlier, in 1791. The parish registers of St.. Mary's Newington, London, shows that Babbage was baptised on 6 January 1792, supporting a birth year of 1791.

Babbage was one of four children of Benjamin Babbage and Betsy Plumleigh Teape. His father was a banking partner in the founding of William Praed Praed's & Co. of Fleet Street, London, in 1801. In 1808, the Babbage family moved into the old Meadfoot Sea house in East Teignmouth, and Benjamin Babbage added a warden of the nearby St. Michael's Church.

A project announced by Babbage was to tabulate all physical constants (referred to as "constants of nature", a phrase in itself a neologism), and then to compile an encyclopedic work of numerical information. He was a pioneer in the field of "absolute measurement". His ideas followed on from those of Johann Christian Poggendorff, and were mentioned to Brewster in 1832. There were to be 19 categories of constants, and Ian Hacking sees these as reflecting in part Babbage's "eccentric enthusiasms". Babbage's paper On Tables of the Constants of Nature and Art was reprinted by the Smithsonian Institution in 1856, with an added note that the physical tables of Arnold Henry Guyot "will form a part of the important work proposed in this article".



Babbage achieved notable results in cryptography, though this was still not known a century after his death. Letter frequency was category 18 of Babbage's tabulation project. Joseph Henry later defended interest in it, in the absence of the facts, as relevant to the management of movable type.
During the Crimean War of the 1850s, Babbage broke Vigenère's autokey cipher as well as the much weaker cipher that is called Vigenère cipher today. Babbage's discovery was kept as a military secret, and was not published. Credit for the result was instead given to Friedrich Kasiski, a Prussian infantry officer, who made the same discovery some years after Babbage. Babbage did write to the Journal of the Society for Arts a short letter "Cypher Writing" which was printed on 7 December 1855.  His priority wasn't established until 1985.



Babbage lived and worked for over 40 years at 1 Dorset Street, Marylebone, where he died, at the age of 79, on 18 October 1871; he was buried in London's Kensal Green Cemetery. According to Horsley, Babbage died "of renal inadequacy, secondary to cystitis." He had declined both a knighthood and baronetcy. He also argued against hereditary peerages, favoring life peerages instead.
In 1983 the autopsy report for Charles Babbage was discovered and later published by his great-great-grandson. A copy of the original is also available. Half of Babbage's brain is preserved at the Hunterian Museum in the Royal College of Surgeons in London. The other half of Babbage's brain is on display in the Science Museum, London



ANALYTICAL ENGINE




The Analytical Engine was a proposed mechanical general-purpose computer designed by English mathematician and computer pioneer Charles Babbage. It was first described in 1837 as the successor to Babbage's difference engine, a design for a mechanical computer.

















Tuesday, January 26, 2016

Rock cycle

The rock cycle is a basic concept in geology that describes the dynamic transitions through geologic time among the three main rock types: sedimentarymetamorphic, and igneous. As the diagram to the right illustrates, each of the types of rocks is altered or destroyed when it is forced out of its equilibrium conditions. An igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and are forced to change as they encounter new environments. The rock cycle is an illustration that explains how the three rock types are related to each other, and how processes change from one type to another over time.


Historical development

The original concept of the rock cycle is usually attributed to James Hutton, from the eighteenth century Father of Geology. The rock cycle was a part of Hutton's uniformitarianismand his famous quote: no vestige of a beginning, and no prospect of an end, applied in particular to the rock cycle and the envisioned cyclical nature of geologic processes. This concept of a repetitive non-evolutionary rock cycle remained dominant until the plate tectonics revolution of the 1960s. With the developing understanding of the driving engine ofplate tectonics, the rock cycle changed from endlessly repetitive to a gradually evolving process. The Wilson cycle (a plate tectonics based rock cycle) was developed by J. Tuzo Wilson during the 1950s and 1960s.

The Rock cycle

Transition to igneous

When rocks are pushed deep under the Earth's surface, they may melt into magma. If the conditions no longer exist for the magma to stay in its liquid state, it will cool and solidify into an igneous rock. A rock that cools within the Earth is calledintrusive or plutonic and will cool very slowly, producing a coarse-grained texture. As a result of volcanic activity, magma (which is called lava when it reaches Earth's surface) may cool very rapidly while being on the Earth's surface exposed to theatmosphere and are called extrusive or volcanic rocks. These rocks are fine-grained and sometimes cool so rapidly that no crystals can form and result in a natural glass, such as obsidian. Any of the three main types of rocks (igneous, sedimentary, and metamorphic rocks) can melt into magma and cool into igneous rocks.

Secondary changes

Epigenetic change (secondary processes) may be arranged under a number of headings, each of which is typical of a group of rocks or rock-forming minerals, though usually more than one of these alterations will be found in progress in the same rock. Silicification, the replacement of the minerals by crystalline or crypto-crystalline silica, is most common in felsic rocks, such as rhyolite, but is also found in serpentine, etc. Kaolinization is the decomposition of the feldspars, which are the most common minerals in igneous rocks, into kaolin (along with quartz and other clay minerals); it is best shown by granites and syenitesSerpentinization is the alteration of olivine toserpentine (with magnetite); it is typical of peridotites, but occurs in most of the mafic rocks. In uralitization, secondary hornblende replaces augitechloritization is the alteration of augite (biotite or hornblende) to chlorite, and is seen in many diabases, diorites and greenstonesEpidotization occurs also in rocks of this group, and consists in the development of epidote from biotite, hornblende, augite or plagioclase feldspar.


Transition to metamorphic

Rocks exposed to high temperatures and pressures can be changed physically or chemically to form a different rock, called metamorphic. Regional metamorphism refers to the effects on large masses of rocks over a wide area, typically associated with mountain building events within orogenic belts. These rocks commonly exhibit distinct bands of differing mineralogy and colors, called foliation. Another main type of metamorphism is caused when a body of rock comes into contact with an igneous intrusion that heats up this surrounding country rock. Thiscontact metamorphism results in a rock that is altered and re-crystallized by the extreme heat of the magma and/or by the addition of fluids from the magma that add chemicals to the surrounding rock (metasomatism). Any pre-existing type of rock can be modified by the processes of metamorphism.


Transition to sedimentary

Rocks exposed to the atmosphere are variably unstable and subject to the processes of weathering and erosion. Weathering and erosion break the original rock down into smaller fragments and carry away dissolved material. This fragmented material accumulates and is buried by additional material. While an individual grain of sand is still a member of the class of rock it was formed from, a rock made up of such grains fused together is sedimentary. Sedimentary rocks can be formed from the lithification of these buried smaller fragments (clastic sedimentary rock), the accumulation and lithification of material generated by living organisms (biogenic sedimentary rock - fossils), or lithification of chemically precipitated material from a mineral bearing solution due toevaporation (precipitate sedimentary rock). Clastic rocks can be formed from fragments broken apart from larger rocks of any type, due to processes such as erosion or from organic material, like plant remains. Biogenic and precipitate rocks form from the deposition of minerals from chemicals dissolved from all other rock types.


Forces that drive the rock cycle

Plate tectonics

In 1967, J. Tuzo Wilson published an article in Nature describing the repeated opening and closing of ocean basins, in particular focusing on the current Atlantic Ocean area. This concept, a part of the plate tectonics revolution, became known as the Wilson cycle. The Wilson cycle has had profound effects on the modern interpretation of the rock cycle as plate tectonics became recognized as the driving force for the rock cycle.
.

Spreading ridges

At the mid-ocean divergent boundaries new magma is produced by mantle upwelling and a shallow melting zone. This juvenile basaltic magma is an early phase of the igneous portion of the cycle. As the tectonic plates on either side of the ridge move apart the new rock is carried away from the ridge, the interaction of heated circulating seawater throughfractures starts the retrograde metamorphism of the new rock.

Subduction zones

The new basaltic oceanic crust eventually meets a subduction zone as it moves away from the spreading ridge. As this crust is pulled back into the mantle, the increasing pressure and temperature conditions cause a restructuring of the mineralogy of the rock, this metamorphism alters the rock to form eclogite. As the slab of basaltic crust and some included sediments are dragged deeper, water and other more volatile materials are driven off and rise into the overlying wedge of rock above the subduction zone which is at a lower pressure. The lower pressure, high temperature, and now volatile rich material in this wedge melts and the resulting buoyant magma rises through the overlying rock to produce island arc or continental marginvolcanism. This volcanism includes more silicic lavas the further from the edge of the island arc or continental margin, indicating a deeper source and a more differentiated magma.
At times some of the metamorphosed downgoing slab may be thrust up or obducted onto the continental margin. These blocks of mantle peridotite and the metamorphic eclogites are exposed as ophiolite complexes.
The newly erupted volcanic material is subject to rapid erosion depending on the climate conditions. These sediments accumulate within the basins on either side of an island arc. As the sediments become more deeply buried lithification begins and sedimentary rock results.


Continental collision

On the closing phase of the classic Wilson cycle, two continental or smaller terranes meet at a convergent zone. As the two masses of continental crust meet, neither can be subducted as they are both low density silicic rock. As the two masses meet, tremendous compressional forces distort and modify the rocks involved. The result is regional metamorphism within the interior of the ensuing orogeny or mountain building event. As the two masses are compressed, folded and faulted into a mountain range by the continental collision the whole suite of pre-existing igneous, volcanic, sedimentary and earlier metamorphic rock units are subjected to this new metamorphic event.

Accelerated erosion

The high mountain ranges produced by continental collisions are immediately subjected to the forces of erosion. Erosion wears down the mountains and massive piles of sediment are developed in adjacent ocean margins, shallow seas, and as continental deposits. As these sediment piles are buried deeper they become lithified into sedimentary rock. The metamorphic, igneous, and sedimentary rocks of the mountains become the new piles of sediments in the adjoining basins and eventually become sedimentary rock.

An evolving process

The plate tectonics rock cycle is an evolutionary process. Magma generation, both in the spreading ridge environment and within the wedge above a subduction zone, favors the eruption of the more silicic and volatile rich fraction of the crustal or upper mantle material. This lower density material tends to stay within the crust and not be subducted back into the mantle. The magmatic aspects of plate tectonics tends to gradual segregation within or between the mantle and crust. As magma forms, the initial melt is composed of the more silicic phases that have a lower melting point. This leads to partial melting and further segregation of the lithosphere. In addition the silicic continental crust is relatively buoyant and is not normally subducted back into the mantle. So over time the continental masses grow larger and larger.

The role of water

The presence of abundant water on Earth is of great importance for the rock cycle. Most obvious perhaps are the water driven processes of weathering and erosion. Water in the form of precipitation and acidic soil water and groundwater is quite effective at dissolving minerals and rocks, especially those igneous and metamorphic rocks and marine sedimentary rocks that are unstable under near surface and atmospheric conditions. The water carries away the ions dissolved in solution and the broken down fragments that are the products of weathering. Running water carries vast amounts of sediment in rivers back to the ocean and inland basins. The accumulated and buried sediments are converted back into rock.
A less obvious role of water is in the metamorphism processes that occur in fresh seafloor volcanic rocks as seawater, sometimes heated, flows through the fractures and crevices in the rock. All of these processes, illustrated by serpentinization, are an important part of the destruction of volcanic rock.
The role of water and other volatiles in the melting of existing crustal rock in the wedge above a subduction zone is a most important part of the cycle. Along with water, the presence of carbon dioxide and other carbon compounds from abundant marine limestone within the sediments atop the down going slab is another source of melt inducing volatiles. This involves the carbon cycle as a part of the overall rock cycle.






The DepEd Vision

We dream of Filipinos who passionately love their country and whose values and competencies  enable them to realize their full potential and contribute meaningfully to building the nation.As a learner-centered public institution, the Department of Education continuously improves itself to better serve its stakeholders. 


The DepEd Mission

To protect and promote the right of every Filipino to quality, equitable, culture-based, and complete basic education where:

Students learn in a child-friendly, gender-sensitive, safe, and motivating environment.Teachers facilitate learning and constantly nurture every learner.Administrators and staff, as stewards of the institution, ensure an enabling and supportive environment for effective learning to happen.Family, community, and other stakeholders are actively engaged and share responsibility for developing life-long learners.